We investigate apparent and intrinsic singularities of a flat model of aircrafts, illustrated with numerical simulations using Python and Maple. We consider failure situations and maneuvers for which apparent singularities of the previously known flat outputs may appear, making necessary to use some of the new flat outputs we consider. Basically, the aircraft flat outputs are $x$, $y$, $z$, the coordinates of the gravity center, completed with any function of the sideslip angle $\beta$, the angle of attack $\alpha$, the bank angle $\mu$ and the thrust $F$. The choice of $\beta$ was previously used, but does not allow gravity-free flight, for which $\mu$ is the best choice, as well as for decrabe maneuver. The choice of $F$ is adapted for dead-stick landing conditions with $\beta\neq0$, such as forward slip maneuver. This approach also allows to replace usual control with new controls in case of failures, e.g. differential thrust can be used in case of rudder failure. Our results are illustrated by numerical simulations, using realistic non linear aerodynamics models. In a first stage, we investigate the ability of the flatness based control to reject perturbations. Since flatness in that case requires some model simplification, in a second stage, we focus on model errors and show that a suitable feed-back allows to keep trajectories with the complete real model close to the trajectories planned with the simplified one.
翻译:我们用使用 Python 和 Maple 进行数字模拟来说明,对平板飞机模型的表面和内在奇特性进行调查。 我们考虑的故障情况和动作,可能出现先前已知平板产出的明显独特性,因此有必要使用我们考虑的一些新的平板产出。 基本上, 飞机平板产出是美元, 美元, 美元, 美元, 重力中心的坐标, 以侧侧边角角角$\beta$的任何功能完成, 攻击角度$\alpha$, 银行角度$\mu$ 和推力$F$ 。 之前曾使用过美元选择, 但不允许无重力飞行的明显独特性, 而对于前者来说, 美元是最好的选择, 而对于一些新的平板着陆条件来说, $\ 美元, 美元, 重力中心坐标, 重力中心坐标, 以右侧角角角角角角角为任何功能完成。 这种方法还可以用新的控制模式来取代常规的第二模型控制, 例如, 不同的推力可以用来处理过重力故障的情况。 我们的近点结果, 由精确的模拟模拟模拟模拟模拟模拟模拟的模拟来进行精确的模拟的模拟,, 以精确的模拟的模拟, 。