Motion planning is challenging for autonomous systems in multi-obstacle environments due to nonconvex collision avoidance constraints. Directly applying numerical solvers to these nonconvex formulations fails to exploit the constraint structures, resulting in excessive computation time. In this paper, we present an accelerated collision-free motion planner, namely regularized dual alternating direction method of multipliers (RDADMM or RDA for short), for the model predictive control (MPC) based motion planning problem. The proposed RDA addresses nonconvex motion planning via solving a smooth biconvex reformulation via duality and allows the collision avoidance constraints to be computed in parallel for each obstacle to reduce computation time significantly. We validate the performance of the RDA planner through path-tracking experiments with car-like robots in simulation and real world setting. Experimental results show that the proposed methods can generate smooth collision-free trajectories with less computation time compared with other benchmarks and perform robustly in cluttered environments.
翻译:在多孔环境中的自主系统,由于非convex避免碰撞的限制,机动规划是具有挑战性的。直接将这些非convex的配方应用数字解算器无法利用制约结构,从而造成过长的计算时间。在本文中,我们提出了一个加速的无碰撞运动规划器,即,固定的双向倍数方向法(RDADMM或RDA短),用于模型预测控制(MPC)的动作规划问题。拟议的RDA处理非convex运动规划,通过双轨法解决平滑的双convex重整,并允许为每个障碍同时计算避免碰撞的限制因素,以显著缩短计算时间。我们通过模拟和真实世界环境中的汽车型机器人的路径跟踪实验,验证RDA规划器的性能。实验结果表明,拟议的方法可以产生与其它基准相比计算时间较少的平稳的无碰撞轨道,并在杂乱的环境中进行稳健的操作。