Traditional click-through rate (CTR) prediction models convert the tabular data into one-hot vectors and leverage the collaborative relations among features for inferring user's preference over items. This modeling paradigm discards the essential semantic information. Though some recent works like P5 and M6-Rec have explored the potential of using Pre-trained Language Models (PLMs) to extract semantic signals for CTR prediction, they are computationally expensive and suffer from low efficiency. Besides, the beneficial collaborative relations are not considered, hindering the recommendation performance. To solve these problems, in this paper, we propose a novel framework \textbf{CTRL}, which is industrial friendly and model-agnostic with high training and inference efficiency. Specifically, the original tabular data is first converted into textual data. Both tabular data and converted textual data are regarded as two different modalities and are separately fed into the collaborative CTR model and pre-trained language model. A cross-modal knowledge alignment procedure is performed to fine-grained align and integrate the collaborative and semantic signals, and the lightweight collaborative model can be deployed online for efficient serving after fine-tuned with supervised signals. Experimental results on three public datasets show that CTRL outperforms the SOTA CTR models significantly. Moreover, we further verify its effectiveness on a large-scale industrial recommender system.


翻译:暂无翻译

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2021年6月15日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员