Blockchains are now significantly easing trade finance, with billions of dollars worth of assets being transacted daily. However, analyzing these networks remains challenging due to the large size and complexity of the data. We introduce a scalable approach called "InnerCore" for identifying key actors in blockchain-based networks and providing a sentiment indicator for the networks using data depth-based core decomposition and centered-motif discovery. InnerCore is a computationally efficient, unsupervised approach suitable for analyzing large temporal graphs. We demonstrate its effectiveness through case studies on the recent collapse of LunaTerra and the Proof-of-Stake (PoS) switch of Ethereum, using external ground truth collected by a leading blockchain analysis company. Our experiments show that InnerCore can match the qualified analysis accurately without human involvement, automating blockchain analysis and its trend detection in a scalable manner.


翻译:区块链现在显著地促进了贸易金融,每天交易的资产价值数十亿美元。然而,由于数据的庞大和复杂性,分析这些网络仍然很具有挑战性。我们引入了一种可扩展的方法,称为“InnerCore”,用于通过使用基于数据深度的核心分解和基于中心模体发现,识别区块链网络中的关键角色并为网络提供情感指标。InnerCore 是一种计算效率高的无监督方法,适用于分析大型时间图。我们通过对最近的 LunaTerra 垮台和 Ethereum 的 PoS 切换进行案例研究,并使用一家领先的区块链分析公司收集的外部基础事实,证明了其有效性。我们的实验表明,InnerCore 可以在不需要人工干预的情况下准确地匹配合格的分析,从而自动化区块链分析和其趋势检测。

0
下载
关闭预览

相关内容

区块链(Blockchain)是由节点参与的分布式数据库系统,它的特点是不可更改,不可伪造,也可以将其理解为账簿系统(ledger)。它是比特币的一个重要概念,完整比特币区块链的副本,记录了其代币(token)的每一笔交易。通过这些信息,我们可以找到每一个地址,在历史上任何一点所拥有的价值。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
22+阅读 · 2022年3月31日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
20+阅读 · 2020年6月8日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关论文
Arxiv
22+阅读 · 2022年3月31日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
20+阅读 · 2020年6月8日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
12+阅读 · 2018年9月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员