High-rate product codes (PCs) and staircase codes (SCs) are ubiquitous codes in high-speed optical communication achieving near-capacity performance on the binary symmetric channel. Their success is mostly due to very efficient iterative decoding algorithms that require very little complexity. In this paper, we extend the density evolution (DE) analysis for PCs and SCs to a channel with ternary output and ternary message passing, where the third symbol marks an erasure. We investigate the performance of a standard error-and-erasure decoder and of its simplification using DE. The proposed analysis can be used to find component code configurations and quantizer levels for the channel output. We also show how the use of even-weight BCH subcodes as component codes can improve the decoding performance at high rates. The DE results are verified by Monte-Carlo simulations, which show that additional coding gains of up to 0.6 dB are possible by ternary decoding, at only a small additional increase in complexity compared to traditional binary message passing.


翻译:高标准产品编码(PCs)和楼梯编码(SCs)是高速光学通信中无处不在的编码,在二进制对称信道上达到近容量性能。它们的成功主要归功于非常高效的迭代解码算法,需要的复杂程度很少。在本文中,我们将PCs和SCs的密度演化分析扩大到一个具有长期输出和永久信息传递标志的频道,第三个符号标志着消退。我们调查标准错误和衰变解码的性能及其使用DE的简化。提议的分析可用于寻找频道输出的组件代码配置和量级。我们还展示了将双量 BCH 子编码用作元代码如何提高高速度的解码性能。蒙特-卡洛模拟证实了DE的结果,它表明,通过解码,与传统的二进式信息相比,最多为0.6 dB的额外编码收益是可能的,只有少量的复杂程度。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月29日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员