This paper presents the novel approach towards table structure recognition by leveraging the guided anchors. The concept differs from current state-of-the-art approaches for table structure recognition that naively apply object detection methods. In contrast to prior techniques, first, we estimate the viable anchors for table structure recognition. Subsequently, these anchors are exploited to locate the rows and columns in tabular images. Furthermore, the paper introduces a simple and effective method that improves the results by using tabular layouts in realistic scenarios. The proposed method is exhaustively evaluated on the two publicly available datasets of table structure recognition i.e ICDAR-2013 and TabStructDB. We accomplished state-of-the-art results on the ICDAR-2013 dataset with an average F-Measure of 95.05$\%$ (94.6$\%$ for rows and 96.32$\%$ for columns) and surpassed the baseline results on the TabStructDB dataset with an average F-Measure of 94.17$\%$ (94.08$\%$ for rows and 95.06$\%$ for columns).


翻译:本文件介绍了借助引导锚对表结构进行识别的新颖方法。概念不同于目前最先进的对表结构进行识别的方法,即天真地应用天真地应用天体探测方法。与以往的技术相比,我们首先估计表结构识别的可行锚值。随后,利用这些锚值将行和列定位在表格图像中。此外,本文件还介绍了一种简单而有效的方法,在现实情景中使用表格布局改进了结果。在两种公开的表结构识别数据集(即ICDAR-2013和TabStructDB)上,对拟议方法进行了详尽的评估。我们完成了ICDAR-2013数据集的最新结果,平均F-计量为95.05美元(行为94.6美元,列为96.32美元),超过了TabStructDD数据集的基线结果,平均F-17美元(行为94.08美元,列为95.06美元)。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年6月10日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员