This paper presents the novel approach towards table structure recognition by leveraging the guided anchors. The concept differs from current state-of-the-art approaches for table structure recognition that naively apply object detection methods. In contrast to prior techniques, first, we estimate the viable anchors for table structure recognition. Subsequently, these anchors are exploited to locate the rows and columns in tabular images. Furthermore, the paper introduces a simple and effective method that improves the results by using tabular layouts in realistic scenarios. The proposed method is exhaustively evaluated on the two publicly available datasets of table structure recognition i.e ICDAR-2013 and TabStructDB. We accomplished state-of-the-art results on the ICDAR-2013 dataset with an average F-Measure of 95.05$\%$ (94.6$\%$ for rows and 96.32$\%$ for columns) and surpassed the baseline results on the TabStructDB dataset with an average F-Measure of 94.17$\%$ (94.08$\%$ for rows and 95.06$\%$ for columns).
翻译:本文件介绍了借助引导锚对表结构进行识别的新颖方法。概念不同于目前最先进的对表结构进行识别的方法,即天真地应用天真地应用天体探测方法。与以往的技术相比,我们首先估计表结构识别的可行锚值。随后,利用这些锚值将行和列定位在表格图像中。此外,本文件还介绍了一种简单而有效的方法,在现实情景中使用表格布局改进了结果。在两种公开的表结构识别数据集(即ICDAR-2013和TabStructDB)上,对拟议方法进行了详尽的评估。我们完成了ICDAR-2013数据集的最新结果,平均F-计量为95.05美元(行为94.6美元,列为96.32美元),超过了TabStructDD数据集的基线结果,平均F-17美元(行为94.08美元,列为95.06美元)。