Dialogue state tracking (DST) aims to predict the current dialogue state given the dialogue history. Existing methods generally exploit the utterances of all dialogue turns to assign value for each slot. This could lead to suboptimal results due to the information introduced from irrelevant utterances in the dialogue history, which may be useless and can even cause confusion. To address this problem, we propose LUNA, a sLot-tUrN Alignment enhanced approach. It first explicitly aligns each slot with its most relevant utterance, then further predicts the corresponding value based on this aligned utterance instead of all dialogue utterances. Furthermore, we design a slot ranking auxiliary task to learn the temporal correlation among slots which could facilitate the alignment. Comprehensive experiments are conducted on multi-domain task-oriented dialogue datasets, i.e., MultiWOZ 2.0, MultiWOZ 2.1, and MultiWOZ 2.2. The results show that LUNA achieves new state-of-the-art results on these datasets.
翻译:对话状态跟踪( DST) 旨在预测当前对话状态( DST) 。 现有方法通常利用所有对话的表达方式来为每个时段分配值。 这可能导致不优化的结果, 原因是对话历史中无关的表达方式带来信息, 这些信息可能是无用的, 甚至可能造成混乱 。 为了解决这个问题, 我们提议采用 Slot- turn 匹配强化方法LUNA, 即 Slot- turn 对齐方法。 它首先明确将每个时段与其最相关的表达方式相匹配, 然后进一步预测基于此对齐表达的对应值, 而不是所有对话的表达方式。 此外, 我们设计了一个空档排序辅助任务, 以学习不同时段之间的时间相关性, 从而便利对齐。 在多域面向任务的对话数据集上进行了全面实验, 即多域WOZ 2. 0、 MultiWOZ 2. 1 和 MultuWOZ 2. 2. 2. 2. 。 结果显示, LUNA 在这些数据集上取得了新的最新状态结果 。