项目名称: 基于PMP的混合动力公交车能量管理策略研究
项目编号: No.51505173
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 机械、仪表工业
项目作者: 王业琴
作者单位: 淮阴工学院
项目金额: 21万元
中文摘要: 混合动力公交车动力性和燃油经济性很大程度上取决于能量管理策略, 针对传统能量管理策略实用性和全局最优化目标不能兼顾的问题,提出基于庞特里亚金极小值原理(PMP)的混合动力公交车能量管理策略。充分考虑人车路对能量管理策略影响,构建基于AR-HMM的驾驶意图识别与预测模型,准确预测未来一段时间内驾驶意图;基于多维GM和HMM,进行公交车工况辨识算法研究,实时辨识整车实际工况。围绕庞特里亚金极小值原理应用中的控制参数选定、全局最优化讨论等关键问题进行深入研究,构建能量管理问题模型,求出动力分配最优解,既能保证全局最优化,又具有实用性。搭建试验平台,验证理论分析与数值计算结果,在此基础上进行整车测试。本研究为混合动力汽车能量管理问题提供新思路和通用策略。
中文关键词: 混合动力公交车;能量管理策略;庞特里亚金极小值原理;工况辨识;驾驶意图预测
英文摘要: The driving performance and fuel economy of hybrid power bus largely depend on energy management strategy,However,the traditional energy management strategy can't satisfy both practical and global optimization, Aiming at this problem, a new energy management strategy for hybrid power bus based on Pontryagin's Minimum Principle (PMP) is presented in this project. This project will establish the driving intention forecast and prediction model in full consideration of the people-vehicle-road influence on power management control system, which can make accurate prediction of driving intention for some time to come. The algorithm research of operation state identification of hybrid power bus is done based on multi-dimensional Gaussian Model (GM) and Hidden Markov Model (HMM), and the real-time identification of actual working conditions is realized. And also, this project ties to discuss some key issues of Pontryagin's Minimum Principle (PMP) application in depth including control parameters tuning and global optimization, and energy management model will be built to find the optimal solution of force distribution. In this way, both global optimization and practical can be taken into account. Finally, an examinational platform will be set up to validate the theoretical analysis and the numerical results, and vehicle test will be performed. This study will provide a new ideas and a useful general strategy for hybrid power bus power management.
英文关键词: hybrid power bus;energy management strategy;Pontryagin's Minimum Principle (PMP);working conditions identification;driving intention forecast