We introduce a method which provides accurate numerical solutions to fractional-in-time partial differential equations posed on $[0,T] \times \Omega$ with $\Omega \subset \mathbb{R}^d$ without the excessive memory requirements associated with the nonlocal fractional derivative operator. Our approach combines recent advances in the development and utilization of multivariate sparse spectral methods as well as fast methods for the computation of Gauss quadrature nodes with recursive non-classical methods for the Caputo fractional derivative of general fractional order $\alpha > 0$. An attractive feature of the method is that it has minimal theoretical overhead when using it on any domain $\Omega$ on which an orthogonal polynomial basis is already available. We discuss the memory requirements of the method, present several numerical experiments demonstrating the method's performance in solving time-fractional PDEs on intervals, triangles and disks and derive error bounds which suggest sensible convergence strategies. As an important model problem for this approach we consider a type of wave equation with time-fractional dampening related to acoustic waves in viscoelastic media with applications in the physics of medical ultrasound and outline future research steps required to use such methods for the reverse problem of image reconstruction from sensor data.
翻译:我们介绍了一种方法,用于在$[0,T] \times \Omega$上求解时间分数阶偏微分方程,其中$\Omega \subset \mathbb{R}^d$,并且不需要使用过多的内存来处理非局部分数导数算子。我们的方法组合了最近多元稀疏谱方法的发展和应用,以及用于一般分数阶$\alpha > 0$的Caputo分数导数的递归非经典方法与用于计算高斯积分点的快速方法。该方法的一个优点是,当在已经存在正交多项式基的任何域$\Omega$上使用时,理论开销最小。我们讨论了该方法的内存要求,并展示了使用它求解时间分数阶偏微分方程在区间、三角形和圆盘上的性能的多个数值实验,并推导了误差界限,建议合理的收敛策略。作为该方法的一个重要模型问题,我们考虑了一种具有与医学超声物理相关的时间分数阶阻尼的波动方程,并概述了使用这种方法进行图像重构的逆问题所需的未来研究步骤。