Land cover classification (LCC), and monitoring how land use changes over time, is an important process in climate change mitigation and adaptation. Existing approaches that use machine learning with Earth observation data for LCC rely on fully-annotated and segmented datasets. Creating these datasets requires a large amount of effort, and a lack of suitable datasets has become an obstacle in scaling the use of LCC. In this study, we propose Scene-to-Patch models: an alternative LCC approach utilising Multiple Instance Learning (MIL) that requires only high-level scene labels. This enables much faster development of new datasets whilst still providing segmentation through patch-level predictions, ultimately increasing the accessibility of using LCC for different scenarios. On the DeepGlobe-LCC dataset, our approach outperforms non-MIL baselines on both scene- and patch-level prediction. This work provides the foundation for expanding the use of LCC in climate change mitigation methods for technology, government, and academia.
翻译:使用对地观测数据进行机器学习的现有方法,对于LCC而言,使用地球观测数据的现有方法依赖于充分注解和分解的数据集。 创建这些数据集需要大量的努力,而缺乏合适的数据集已成为扩大LCC使用范围的障碍。在本研究中,我们提出了场点到场点模型:一种使用多例实例学习的替代LCC方法,只需要高层次的场景标签。这样可以更快地开发新的数据集,同时通过补丁级预测提供分解,最终增加不同情景使用LCC的机会。在DeepGlobe-LCC数据集上,我们的方法在现场和补接级预测上都优于非MIL基线。这项工作为扩大在技术、政府和学术界的气候变化缓解方法中使用LCC奠定了基础。