In this paper, we propose SelfNeRF, an efficient neural radiance field based novel view synthesis method for human performance. Given monocular self-rotating videos of human performers, SelfNeRF can train from scratch and achieve high-fidelity results in about twenty minutes. Some recent works have utilized the neural radiance field for dynamic human reconstruction. However, most of these methods need multi-view inputs and require hours of training, making it still difficult for practical use. To address this challenging problem, we introduce a surface-relative representation based on multi-resolution hash encoding that can greatly improve the training speed and aggregate inter-frame information. Extensive experimental results on several different datasets demonstrate the effectiveness and efficiency of SelfNeRF to challenging monocular videos.
翻译:在本文中,我们提出“SelfNeRF”,这是一个以神经光亮场为基础的高效人类性能的新视角合成方法。根据人类表演者的单向自我旋转视频,SelfNeRF可以从零开始训练,在大约20分钟内取得高度忠诚的结果。最近的一些作品利用神经光亮场进行动态的人类重建。然而,这些方法大多需要多视角投入,需要几个小时的培训,因此仍然难以实际使用。为了解决这一具有挑战性的问题,我们采用了基于多分辨率散列编码的表面相对代表,这可以大大提高培训速度和综合框架间信息。关于若干不同数据集的广泛实验结果表明“SelfNeRF”对单向单向视频挑战的效果和效率。