A minimum path cover (MPC) of a directed acyclic graph (DAG) $G = (V,E)$ is a minimum-size set of paths that together cover all the vertices of the DAG. Computing an MPC is a basic polynomial problem, dating back to Dilworth's and Fulkerson's results in the 1950s. Since the size $k$ of an MPC (also known as the width) can be small in practical applications, research has also studied algorithms whose complexity is parameterized on $k$. We obtain two new MPC parameterized algorithms for DAGs running in time $O(k^2|V|\log{|V|} + |E|)$ and $O(k^3|V| + |E|)$. We also obtain a parallel algorithm running in $O(k^2|V| + |E|)$ parallel steps and using $O(\log{|V|})$ processors (in the PRAM model). Our latter two algorithms are the first solving the problem in parameterized linear time. Finally, we present an algorithm running in time $O(k^2|V|)$ for transforming any MPC to another MPC using less than $2|V|$ distinct edges, which we prove to be asymptotically tight. As such, we also obtain edge sparsification algorithms preserving the width of the DAG with the same running time as our MPC algorithms. At the core of all our algorithms we interleave the usage of three techniques: transitive sparsification, shrinking of a path cover, and the splicing of a set of paths along a given path.
翻译:方向自行车图( DAG) $G = ( V, E) 的最小路径覆盖( MPC) 。 计算一个 MPC 是一个基本的多元问题, 追溯到 Dilworth 和 Fulkeson 1950 年代的结果。 由于一个 MPC (又称为宽度) 的大小在实际应用中可以小一些, 研究还研究了其复杂性以 美元为参数的算法 。 我们获得了两套新的 MPC 参数化算法, 共覆盖了 DAG 的所有螺旋。 计算一个最小的路径。 计算一个 MCC 是一个基本的多元问题, 追溯到 Dilworth 和 Fulkerson 1950 的结果 。 由于一个 MPC (k) 的大小( 也称为宽度 ), 并使用 $( logv) 的精度计算器 。 我们的后两套算法是第一次解决这个在时间里程中运行的 UR2 。 最后, 也使用另一个 MPQ( ) rocialalation ral) 的路径 。 。 我们用 oralation oral orizaltiquest ralation 。