An exact $(k,d)$-coloring of a graph $G$ is a coloring of its vertices with $k$ colors such that each vertex $v$ is adjacent to exactly $d$ vertices having the same color as $v$. The exact $d$-defective chromatic number, denoted $\chi_d^=(G)$, is the minimum $k$ such that there exists an exact $(k,d)$-coloring of $G$. In an exact $(k,d)$-coloring, which for $d=0$ corresponds to a proper coloring, each color class induces a $d$-regular subgraph. We give basic properties for the parameter and determine its exact value for cycles, trees, and complete graphs. In addition, we establish bounds on $\chi_d^=(G)$ for all relevant values of $d$ when $G$ is planar, chordal, or has bounded treewidth. We also give polynomial-time algorithms for finding certain types of exact $(k,d)$-colorings in cactus graphs and block graphs. Our main result is on the computational complexity of $d$-EXACT DEFECTIVE $k$-COLORING in which we are given a graph $G$ and asked to decide whether $\chi_d^=(G) \leq k$. Specifically, we prove that the problem is NP-complete for all $d \geq 1$ and $k \geq 2$.
翻译:精确的 $ (k, d) 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 彩色 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元的 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元