We study the decremental All-Pairs Shortest Paths (APSP) problem in undirected edge-weighted graphs. The input to the problem is an $n$-vertex $m$-edge graph $G$ with non-negative edge lengths, that undergoes a sequence of edge deletions. The goal is to support approximate shortest-path queries: given a pair $x,y$ of vertices of $G$, return a path $P$ connecting $x$ to $y$, whose length is within factor $\alpha$ of the length of the shortest $x$-$y$ path, in time $\tilde O(|E(P)|)$, where $\alpha$ is the approximation factor of the algorithm. APSP is one of the most basic and extensively studied dynamic graph problems. A long line of work culminated in the algorithm of [Chechik, FOCS 2018] with near optimal guarantees for the oblivious-adversary setting. Unfortunately, adaptive-adversary setting is still poorly understood. For unweighted graphs, the algorithm of [Henzinger, Krinninger and Nanongkai, FOCS '13, SICOMP '16] achieves a $(1+\epsilon)$-approximation with total update time $\tilde O(mn/\epsilon)$; the best current total update time of $n^{2.5+O(\epsilon)}$ is achieved by the deterministic algorithm of [Chuzhoy, Saranurak, SODA'21], with $2^{O(1/\epsilon)}$-multiplicative and $2^{O(\log^{3/4}n/\epsilon)}$-additive approximation. To the best of our knowledge, for arbitrary non-negative edge weights, the fastest current adaptive-update algorithm has total update time $O(n^{3}\log L/\epsilon)$, achieving a $(1+\epsilon)$-approximation. Here, L is the ratio of longest to shortest edge lengths. Our main result is a deterministic algorithm for decremental APSP in undirected edge-weighted graphs, that, for any $\Omega(1/\log\log m)\leq \epsilon< 1$, achieves approximation factor $(\log m)^{2^{O(1/\epsilon)}}$, with total update time $O\left (m^{1+O(\epsilon)}\cdot (\log m)^{O(1/\epsilon^2)}\cdot \log L\right )$.
翻译:我们用非负偏差长度的图解来研究所有最短路径(APSP) 问题。 问题的投入是 美元- 平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面。