In this paper, we propose a controllable neural generation framework that can flexibly guide dialogue summarization with personal named entity planning. The conditional sequences are modulated to decide what types of information or what perspective to focus on when forming summaries to tackle the under-constrained problem in summarization tasks. This framework supports two types of use cases: (1) Comprehensive Perspective, which is a general-purpose case with no user-preference specified, considering summary points from all conversational interlocutors and all mentioned persons; (2) Focus Perspective, positioning the summary based on a user-specified personal named entity, which could be one of the interlocutors or one of the persons mentioned in the conversation. During training, we exploit occurrence planning of personal named entities and coreference information to improve temporal coherence and to minimize hallucination in neural generation. Experimental results show that our proposed framework generates fluent and factually consistent summaries under various planning controls using both objective metrics and human evaluations.


翻译:在本文中,我们提议一个可控制的神经生成框架,可灵活地指导对话与个人名称实体规划的总结; 有条件的顺序经过调整,以决定在制定摘要以解决总体任务中受限制不足的问题时,应侧重于何种类型的信息或观点; 这一框架支持两类使用案例:(1) 全面视角,这是一个没有用户首选的通用案例,考虑到所有对话者及所有被提及人员的简要观点;(2) 焦点视角,将摘要定位于用户指定的个人名称实体,该实体可以是对话者或对话中提及的人之一;在培训期间,我们利用个人名称实体的发生规划,并参考信息,以提高时间的一致性,尽量减少神经生成过程中的幻觉;实验结果显示,我们提议的框架在各种规划控制下,利用客观指标和人力评价,生成流畅和事实一致的摘要。

0
下载
关闭预览

相关内容

【杜克-Bhuwan Dhingra】语言模型即知识图谱,46页ppt
专知会员服务
65+阅读 · 2021年11月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Arxiv
5+阅读 · 2019年8月22日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
73+阅读 · 2018年12月22日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关VIP内容
【杜克-Bhuwan Dhingra】语言模型即知识图谱,46页ppt
专知会员服务
65+阅读 · 2021年11月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员