In task-oriented dialogue systems, recent dialogue state tracking methods tend to perform one-pass generation of the dialogue state based on the previous dialogue state. The mistakes of these models made at the current turn are prone to be carried over to the next turn, causing error propagation. In this paper, we propose a novel Amendable Generation for Dialogue State Tracking (AG-DST), which contains a two-pass generation process: (1) generating a primitive dialogue state based on the dialogue of the current turn and the previous dialogue state, and (2) amending the primitive dialogue state from the first pass. With the additional amending generation pass, our model is tasked to learn more robust dialogue state tracking by amending the errors that still exist in the primitive dialogue state, which plays the role of reviser in the double-checking process and alleviates unnecessary error propagation. Experimental results show that AG-DST significantly outperforms previous works in two active DST datasets (MultiWOZ 2.2 and WOZ 2.0), achieving new state-of-the-art performances.
翻译:在以任务为导向的对话系统中,最近的对话状态跟踪方法往往在先前对话状态的基础上,对对话状态进行一次性的生成。在目前转弯时,这些模式的错误很容易被延续到下一个转弯,导致错误的传播。在本文中,我们提出一个新的“对话状态追踪可修正一代”(AG-DST),其中包含一个双层进程:(1) 在当前转弯和前一个对话状态的对话基础上,产生原始对话状态,(2) 从第一个转弯修正原始对话状态。在新增修正的一代通行证中,我们的模式的任务是通过修正原始对话状态中仍然存在的错误来学习更稳健的对话状态跟踪。原始对话状态在重复检查过程中扮演了审校的角色,并减轻不必要的错误传播。实验结果表明,AG-DST大大超越了两个活跃的DST数据集(MultiWOZ 2. 2 和 WOZ 2. 0)的先前工作,实现了新的状态表现。