Deep attractor networks (DANs) perform speech separation with discriminative embeddings and speaker attractors. Compared with methods based on the permutation invariant training (PIT), DANs define a deep embedding space and deliver a more elaborate representation on each time-frequency (T-F) bin. However, it has been observed that the DANs achieve limited improvement on the signal quality if directly deployed in a reverberant environment. Following the success of time-domain separation networks on the clean mixture speech, we propose a time-domain DAN (TD-DAN) with two-streams of convolutional networks, which efficiently perform both dereverberation and separation tasks under the condition of a variable number of speakers. The speaker encoding stream (SES) of the TD-DAN is trained to model the speaker information in the embedding space. The speech decoding stream (SDS) accepts speaker attractors from the SES and learns to estimate early reflections from the spectro-temporal representations. Meanwhile, additional clustering losses are used to bridge the gap between the oracle and the estimated attractors. Experiments were conducted on the Spatialized Multi-Speaker Wall Street Journal (SMS-WSJ) dataset. The early reflection was compared with the anechoic and reverberant signals and then was chosen as the learning targets. The experimental results demonstrated that the TD-DAN achieved scale-invariant source-to-distortion ratio (SI-SDR) gains of 9.79/7.47 dB on the reverberant 2/3-speaker evaluation set, exceeding the baseline DAN and convolutional time-domain audio separation network (Conv-TasNet) by 1.92/0.68 dB and 0.91/0.47 dB, respectively.


翻译:深色吸引者网络(Dans)与歧视性嵌入器和扬声器吸引器进行语音分离。 与基于变换培训的方法相比, Dans 定义深层嵌入空间,并在每个时频(T-F) bin 上提供更精细的演示。 然而,据观察,如果直接在回旋环境中部署,DARD在信号质量上取得了有限的改进。 在清洁混合演讲的时空分隔网络成功之后,我们提议使用一个具有双流的动态网络(TD-DAN),同时使用双流的同流网络,在变异式的发言者条件下高效地执行变异和分离任务。 TD-DARD(S) 发言者编码流(S-S-SDR) 在嵌入空间定位器直接接收语音吸引器,并学会通过光谱选择的演示来估计早期反射结果。 同时,还使用额外的集群损失来缩小了Oorcer和估计的螺旋流- BRestal- main- main- mainal- reportal- sal- sal- laudateal-deal-deal- sal- sal- sal-deal-deal- remadrevational- sal- sal- sal- sal-deal-deal-deal-deal-deal- real- sal- sal- sal- sal- ladal- lad- ladal- sal- ladaldal- ladal- ladal- ladal-dal-dal- sal- ladal-dal-dal-dal-daldal-dal-dal-dal-dal-d-dal-d-dal-dal-dal-deal-deal-dal-dal-dal-daldaldal-dal-daldaldal-dal-dal-dal-dal-deal-demental-deal-deal-dal-deal-s-deal-deal-deal-dealdaldal-deal-deal-deal-deal-deal-deal-deal-

0
下载
关闭预览

相关内容

深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
7+阅读 · 2017年12月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员