In this paper, we present a novel insider attack called Matryoshka, which employs an irrelevant scheduled-to-publish DNN model as a carrier model for covert transmission of multiple secret models which memorize the functionality of private ML data stored in local data centers. Instead of treating the parameters of the carrier model as bit strings and applying conventional steganography, we devise a novel parameter sharing approach which exploits the learning capacity of the carrier model for information hiding. Matryoshka simultaneously achieves: (i) High Capacity -- With almost no utility loss of the carrier model, Matryoshka can hide a 26x larger secret model or 8 secret models of diverse architectures spanning different application domains in the carrier model, neither of which can be done with existing steganography techniques; (ii) Decoding Efficiency -- once downloading the published carrier model, an outside colluder can exclusively decode the hidden models from the carrier model with only several integer secrets and the knowledge of the hidden model architecture; (iii) Effectiveness -- Moreover, almost all the recovered models have similar performance as if it were trained independently on the private data; (iv) Robustness -- Information redundancy is naturally implemented to achieve resilience against common post-processing techniques on the carrier before its publishing; (v) Covertness -- A model inspector with different levels of prior knowledge could hardly differentiate a carrier model from a normal model.
翻译:在本文中,我们提出了一个名为Matryoshka的新的内部攻击,它使用一个无关的预定出版的DNN模型,作为隐蔽传输多种秘密模型的载体模型,这些模型将存储在本地数据中心的私人ML数据的功能混为一文。我们不把承运人模型的参数作为比特字符串处理,而是应用传统的摄取法,我们设计了一个新颖的参数共享方法,利用承运人模型的学习隐藏信息的能力。Matryoshka同时取得了以下成就:(一) 高能力 -- -- 承运人模型几乎没有任何效用损失,Matryoshka可以隐藏一个26x更大的普通模型或8个涵盖承运人模型中不同应用领域的不同结构的隐秘模型,这两种模型都属于承运人模型的隐蔽性模式。 这两种模型中,既不能使用现有的Stegangraphy技术,也不能使用现有的Stegraphic技术;(二) 降低效率 -- -- 一旦下载了已公布的承运人模型,一个外部的Colluder可以完全将隐藏的模型与承运人模型解码,只有几种整型模型和隐蔽模型的知识;(三) 有效性 -- -- 几乎所有被回收的模型都具有类似性 -- -- -- -- 其在独立的模型上,如果在私营的模型上是用来进行对私营的,那么,那么,那么,则可以使用前的Aredigradustrational-在使用一种不具有一种不易用。