Sparsification reduces the size of networks while preserving structural and statistical properties of interest. Various sparsifying algorithms have been proposed in different contexts. We contribute the first systematic conceptual and experimental comparison of \textit{edge sparsification} methods on a diverse set of network properties. It is shown that they can be understood as methods for rating edges by importance and then filtering globally or locally by these scores. We show that applying a local filtering technique improves the preservation of all kinds of properties. In addition, we propose a new sparsification method (\textit{Local Degree}) which preserves edges leading to local hub nodes. All methods are evaluated on a set of social networks from Facebook, Google+, Twitter and LiveJournal with respect to network properties including diameter, connected components, community structure, multiple node centrality measures and the behavior of epidemic simulations. In order to assess the preservation of the community structure, we also include experiments on synthetically generated networks with ground truth communities. Experiments with our implementations of the sparsification methods (included in the open-source network analysis tool suite NetworKit) show that many network properties can be preserved down to about 20\% of the original set of edges for sparse graphs with a reasonable density. The experimental results allow us to differentiate the behavior of different methods and show which method is suitable with respect to which property. While our Local Degree method is best for preserving connectivity and short distances, other newly introduced local variants are best for preserving the community structure.


翻译:分解会缩小网络规模,同时保存感兴趣的结构和统计属性。 在不同背景下提出了各种分解算法。 我们为一系列不同的网络属性贡献了首次系统化的系统化概念和实验性比较 。 显示它们可以被理解为按重要性进行评分的方法, 然后通过这些分数在全球或本地进行过滤。 我们显示, 应用本地过滤技术可以改善所有类型属性的保存。 此外, 我们提出一种新的分解法(\ textit{ local度 }), 以保存通往本地中心节点的边缘。 我们从Facebook、 Google+、 Twitter 和 LiveJournal 等一系列社交网络属性中评估所有方法, 包括直径、 连接组件、 社区结构、 多点中心度计量以及流行病模拟行为。 为了评估社区结构的维护, 我们还将在与地面真相社区合成生成的网络上进行实验。 与我们执行垃圾分解方法的短期实验( 包含在开放式网络分析工具中 ), 将所有方法都通过一组 NetworkKit 和Lial deal deal Aral Arence 等网络结果, 可以保留我们原始的原始直径直观方法。

0
下载
关闭预览

相关内容

开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
4+阅读 · 2018年2月19日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员