Self-supervised learning makes great progress in large model pre-training but suffers in training small models. Previous solutions to this problem mainly rely on knowledge distillation and indeed have a two-stage learning procedure: first train a large teacher model, then distill it to improve the generalization ability of small ones. In this work, we present a new one-stage solution to obtain pre-trained small models without extra teachers: slimmable networks for contrastive self-supervised learning (\emph{SlimCLR}). A slimmable network contains a full network and several weight-sharing sub-networks. We can pre-train for only one time and obtain various networks including small ones with low computation costs. However, in self-supervised cases, the interference between weight-sharing networks leads to severe performance degradation. One evidence of the interference is \emph{gradient imbalance}: a small proportion of parameters produces dominant gradients during backpropagation, and the main parameters may not be fully optimized. The divergence in gradient directions of various networks may also cause interference between networks. To overcome these problems, we make the main parameters produce dominant gradients and provide consistent guidance for sub-networks via three techniques: slow start training of sub-networks, online distillation, and loss re-weighting according to model sizes. Besides, a switchable linear probe layer is applied during linear evaluation to avoid the interference of weight-sharing linear layers. We instantiate SlimCLR with typical contrastive learning frameworks and achieve better performance than previous arts with fewer parameters and FLOPs.


翻译:自我监督的学习在大型模型培训前取得了很大进步,但在培训小型模型方面却遭遇了困难。 这一问题以前的解决办法主要依靠知识蒸馏,实际上有两阶段学习程序:先培训一个大型教师模型,然后将它蒸馏,以提高小型教师的普及能力。 在这项工作中,我们提出了一个新的一阶段解决办法,以便在没有额外教师的情况下获得经过预先训练的小模型:较优自监督学习的网络较薄:自监督学习(emph{SlimCLR})的网络比较性能网络。一个微薄的网络包含一个完整的网络和若干权重共享子网络。我们可以只一次的预培训并获得各种网络,包括低计算成本的小型网络。然而,在自我监督的情况下,权重共享网络之间的干扰导致严重性能退化。 一种干预的证据是:在反向调整期间,一小部分参数产生支配性梯度的梯度,而主要参数可能不完全优化。 各种网络的梯度方向差异也可能导致网络之间的干扰。 为了克服这些问题,我们通过自我监督的深度评估, 我们用主要的参数来生成最稳性水平的平级的平级的升级的升级的升级的升级, 和升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
11+阅读 · 2020年12月2日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
44+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
25+阅读 · 2021年3月20日
Arxiv
11+阅读 · 2020年12月2日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
38+阅读 · 2020年3月10日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员