In this paper, we study the \emph{type graph}, namely a bipartite graph induced by a joint type. We investigate the maximum edge density of induced bipartite subgraphs of this graph having a number of vertices on each side on an exponential scale in the length $n$ of the type. This can be seen as an isoperimetric problem. We provide asymptotically sharp bounds for the exponent of the maximum edge density as the length of the type goes to infinity. We also study the biclique rate region of the type graph, which is defined as the set of $\left(R_{1},R_{2}\right)$ such that there exists a biclique of the type graph which has respectively $e^{nR_{1}}$ and $e^{nR_{2}}$ vertices on the two sides. We provide asymptotically sharp bounds for the biclique rate region as well. We then apply our results and proof ideas to noninteractive simulation problems. We completely characterize the exponents of maximum and minimum joint probabilities when the marginal probabilities vanish exponentially fast with given exponents. These results can be seen as strong small-set expansion theorems. We extend the noninteractive simulation problem by replacing Boolean functions with arbitrary nonnegative functions, and obtain new hypercontractivity inequalities which are stronger than the common hypercontractivity inequalities. Furthermore, as an application of our results, a new outer bound for the zero-error capacity region of the binary adder channel is provided, which improves the previously best known bound, due to Austrin, Kaski, Koivisto, and Nederlof. Our proofs in this paper are based on the method of types, linear algebra, and coupling techniques.
翻译:在本文中, 我们研究 \ emph{ type Grap}, 即由组合类型引导的双偏偏度图。 我们调查了该图形中由导导出双偏分子图的最大边缘密度, 每侧都有数个螺旋, 以指数规模计算, 其长度为美元。 这可以被视为一个等离线问题 。 我们为最大边缘密度的外缘密度提供平坦度的平面边框。 我们还研究类型图中的双偏率区域, 其定义为 $\ left (R ⁇ 1}, R ⁇ 2 ⁇ right) 。 我们调查了该类型图中由导出的最大双向双向双向双向的双向螺旋。 我们为双向区域提供了最小边缘宽度宽度宽度的边框框。 我们随后将我们的结果和证据都应用到非互动的模拟问题中。 我们完全将最普通的内值的内值函数描述为最小的直径比值, 。 当我们所知道的极值的极值的直径直值为直径直的平方, 。 当我们所了解的平方平方的平方的平方的平方的平方的平方的平方的平方的平方的平方的平方法, 使的平方的平方的平方的平方的平方的平方的平方的平方的平方的平方的平方法, 我们的平方的平方的平方的平方的平方的平方的平方的平方的平方的平方的平方的平方的平方的平方法, 。