The flexibility offered by reconfigurable wireless networks, provide new opportunities for various applications such as online AR/VR gaming, high-quality video streaming and autonomous vehicles, that desire high-bandwidth, reliable and low-latency communications. These applications come with very stringent Quality of Service (QoS) requirements and increase the burden over mobile networks. Currently, there is a huge spectrum scarcity due to the massive data explosion and this problem can be solved by helps of Reconfigurable Wireless Networks (RWNs) where nodes have reconfiguration and perception capabilities. Therefore, a necessity of AI-assisted algorithms for resource block allocation is observed. To tackle this challenge, in this paper, we propose an actor-critic learning-based scheduler for allocating resource blocks in a RWN. Various traffic types with different QoS levels are assigned to our agents to provide more realistic results. We also include mobility in our simulations to increase the dynamicity of networks. The proposed model is compared with another actor-critic model and with other traditional schedulers; proportional fair (PF) and Channel and QoS Aware (CQA) techniques. The proposed models are evaluated by considering the delay experienced by user equipment (UEs), successful transmissions and head-of-the-line delays. The results show that the proposed model noticeably outperforms other techniques in different aspects.


翻译:可重新配置的无线网络所提供的灵活性,为在线AR/VR赌博、高质量视频流和自主车辆等各种应用提供了新的机会,这些应用需要高带宽、可靠和低纬度通信。这些应用具有非常严格的服务质量要求,并增加了移动网络的负担。目前,由于数据大规模爆炸,存在着巨大的频谱稀缺,这个问题可以通过帮助重新配置无线网络(RWNs)来解决,因为节点具有重组和感知能力。因此,需要使用AI辅助算法来分配资源块。为了应对这一挑战,我们在本文件中提议为RWN配置资源区设置一个基于演员-批评学习的进度表。我们的工作人员被指派了不同级别的各种通信类型,以提供更现实的结果。我们还把流动性纳入我们的模拟模型,以提高网络的动态性。拟议模型与另一个行为者-批评模型和其他传统调度器进行了比较;为了应对这一挑战,我们提议采用比例公平的(PFF)和频道-学习方法来分配RWERN的资源块。 由理解性地评估了用户的延迟技术,并评估了其他技术。

0
下载
关闭预览

相关内容

Explanation:无线网。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/journals/winet/
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年10月5日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员