Channel modeling is a critical issue when designing or evaluating the performance of reconfigurable intelligent surface (RIS)-assisted communications. Inspired by the promising potential of learning-based methods for characterizing the radio environment, we present a general approach to model the RIS end-to-end equivalent channel using the unsupervised expectation-maximization (EM) learning algorithm. We show that an EM-based approximation through a simple mixture of two Nakagami-$m$ distributions suffices to accurately approximating the equivalent channel, while allowing for the incorporation of crucial aspects into RIS's channel modeling as spatial channel correlation, phase-shift errors, arbitrary fading conditions, and coexistence of direct and RIS channels. Based on the proposed analytical framework, we evaluate the outage probability under different settings of RIS's channel features and confirm the superiority of this approach compared to recent results in the literature.


翻译:在设计或评价可重新配置的智能表面辅助通信的性能时,频道建模是一个关键问题。在基于学习的无线电环境特征化方法的极有潜力的启发下,我们提出了一个通用方法,利用无人监督的预期-最大化学习算法,模拟RIS端对端等频道。我们表明,通过两种中上-百万美元分布法的简单组合,基于EM的近似就足以准确接近等同频道,同时允许将关键方面纳入RIS的频道建模,如空间信道的相互关系、阶段变错误、任意消减条件以及直接和RIS频道共存。我们根据拟议的分析框架,评估RIS频道特征不同环境下的外差概率,并证实这一方法与文献中最近的结果相比具有优势。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2020年3月27日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Dynamic Transfer Learning for Named Entity Recognition
Arxiv
3+阅读 · 2018年12月13日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员