Through legislation and technical advances users gain more control over how their data is processed, and they expect online services to respect their privacy choices and preferences. However, data may be processed for many different purposes by several layers of algorithms that create complex data workflows. To date, there is no existing approach to automatically satisfy fine-grained privacy constraints of a user in a way which optimises the service provider's gains from processing. In this article, we propose a solution to this problem by modelling a data flow as a graph. User constraints and processing purposes are pairs of vertices which need to be disconnected in this graph. In general, this problem is NP-hard, thus, we propose several heuristics and algorithms. We discuss the optimality versus efficiency of our algorithms and evaluate them using synthetically generated data. On the practical side, our algorithms can provide nearly optimal solutions for tens of constraints and graphs of thousands of nodes, in a few seconds.
翻译:暂无翻译