The growing complexity of global supply chains has made hardware Trojans a significant threat in sensor-based power electronics. Traditional Trojan designs depend on digital triggers or fixed threshold conditions that can be detected during standard testing. In contrast, we introduce Environmental Rate Manipulation (ERM), a novel Trojan triggering mechanism that activates by monitoring the rate of change in environmental parameters rather than their absolute values. This approach allows the Trojan to remain inactive under normal conditions and evade redundancy and sensor-fusion defenses. We implement a compact 14~$\mu$m$^2$ circuit that measures capacitor charging rates in standard sensor front-ends and disrupts inverter pulse-width modulation PWM signals when a rapid change is induced. Experiments on a commercial Texas Instruments solar inverter demonstrate that ERM can trigger catastrophic driver chip failure. Furthermore, ETAP simulations indicate that a single compromised 100~kW inverter may initiate cascading grid instabilities. The attack's significance extends beyond individual sensors to entire classes of environmental sensing systems common in power electronics, demonstrating fundamental challenges for hardware security.
翻译:暂无翻译