Let $D=(V,A)$ be a digraph. We define $\Delta_{\max}(D)$ as the maximum of $\{ \max(d^+(v),d^-(v)) \mid v \in V \}$ and $\Delta_{\min}(D)$ as the maximum of $\{ \min(d^+(v),d^-(v)) \mid v \in V \}$. It is known that the dichromatic number of $D$ is at most $\Delta_{\min}(D) + 1$. In this work, we prove that every digraph $D$ which has dichromatic number exactly $\Delta_{\min}(D) + 1$ must contain the directed join of $\overleftrightarrow{K_r}$ and $\overleftrightarrow{K_s}$ for some $r,s$ such that $r+s = \Delta_{\min}(D) + 1$, except if $\Delta_{\min}(D) = 2$ in which case $D$ must contain a digon. In particular, every oriented graph $\vec{G}$ with $\Delta_{\min}(\vec{G}) \geq 2$ has dichromatic number at most $\Delta_{\min}(\vec{G})$. Let $\vec{G}$ be an oriented graph of order $n$ such that $\Delta_{\min}(\vec{G}) \leq 1$. Given two 2-dicolourings of $\vec{G}$, we show that we can transform one into the other in at most $n$ steps, by recolouring one vertex at each step while maintaining a dicolouring at any step. Furthermore, we prove that, for every oriented graph $\vec{G}$ on $n$ vertices, the distance between two $k$-dicolourings is at most $2\Delta_{\min}(\vec{G})n$ when $k\geq \Delta_{\min}(\vec{G}) + 1$. We then extend a theorem of Feghali, Johnson and Paulusma to digraphs. We prove that, for every digraph $D$ with $\Delta_{\max}(D) = \Delta \geq 3$ and every $k\geq \Delta +1$, the $k$-dicolouring graph of $D$ consists of isolated vertices and at most one further component that has diameter at most $c_{\Delta}n^2$, where $c_{\Delta} = O(\Delta^2)$ is a constant depending only on $\Delta$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
专知会员服务
26+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月13日
Arxiv
0+阅读 · 2023年7月13日
Arxiv
0+阅读 · 2023年7月11日
Arxiv
0+阅读 · 2023年7月11日
Arxiv
0+阅读 · 2023年7月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员