Given a digraph $D=(V,A)$ on $n$ vertices and a vertex $v\in V$, the cycle-degree of $v$ is the minimum size of a set $S \subseteq V(D) \setminus \{v\}$ intersecting every directed cycle of $D$ containing $v$. From this definition of cycle-degree, we define the $c$-degeneracy (or cycle-degeneracy) of $D$, which we denote by $\delta^*_c(D)$. It appears to be a nice generalisation of the undirected degeneracy. In this work, using this new definition of cycle-degeneracy, we extend several evidences for Cereceda's conjecture to digraphs. The $k$-dicolouring graph of $D$, denoted by $\mathcal{D}_k(D)$, is the undirected graph whose vertices are the $k$-dicolourings of $D$ and in which two $k$-dicolourings are adjacent if they differ on the colour of exactly one vertex. We show that $\mathcal{D}_k(D)$ has diameter at most $O_{\delta^*_c(D)}(n^{\delta^*_c(D) + 1})$ (respectively $O(n^2)$ and $(\delta^*_c(D)+1)$) when $k$ is at least $\delta^*_c(D)+2$ (respectively $\frac{3}{2}(\delta^*_c(D)+1)$ and $2(\delta^*_c(D)+1)$). This improves known results on digraph redicolouring (Bousquet et al.). Next, we extend a result due to Feghali to digraphs, showing that $\mathcal{D}_{d+1}(D)$ has diameter at most $O_{d,\epsilon}(n(\log n)^{d-1})$ when $D$ has maximum average cycle-degree at most $d-\epsilon$. We then show that two proofs of Bonamy and Bousquet for undirected graphs can be extended to digraphs. The first one uses the digrundy number of a digraph and the second one uses the $\mathscr{D}$-width. Finally, we give a general theorem which makes a connection between the recolourability of a digraph $D$ and the recolourability of its underlying graph $UG(D)$. This result directly extends a number of results on planar graph recolouring to planar digraph redicolouring.
翻译:暂无翻译