Current model extraction attacks assume that the adversary has access to a surrogate dataset with characteristics similar to the proprietary data used to train the victim model. This requirement precludes the use of existing model extraction techniques on valuable models, such as those trained on rare or hard to acquire datasets. In contrast, we propose data-free model extraction methods that do not require a surrogate dataset. Our approach adapts techniques from the area of data-free knowledge transfer for model extraction. As part of our study, we identify that the choice of loss is critical to ensuring that the extracted model is an accurate replica of the victim model. Furthermore, we address difficulties arising from the adversary's limited access to the victim model in a black-box setting. For example, we recover the model's logits from its probability predictions to approximate gradients. We find that the proposed data-free model extraction approach achieves high-accuracy with reasonable query complexity -- 0.99x and 0.92x the victim model accuracy on SVHN and CIFAR-10 datasets given 2M and 20M queries respectively.
翻译:目前的模型抽取攻击假定对手能够获得一个替代数据集,该数据集的特点类似于用于培训受害者模型的专有数据。这一要求排除了在有价值的模型上使用现有的模型抽取技术,例如那些受过稀有或难于获取数据集培训的模型。相反,我们提出了不需要替代数据集的无数据模型抽取方法。我们的方法将无数据知识传输领域的技术用于模型抽取。作为我们研究的一部分,我们发现选择损失对于确保所提取模型准确复制受害者模型至关重要。此外,我们还解决了由于对手在黑盒设置中有限使用受害者模型而产生的困难。例如,我们从模型的概率预测中恢复到近似梯度。我们发现,拟议的无数据模型抽取方法以合理的查询复杂性 -- -- 0.99x和0.92x受害者模型在SVHN和CIFAR-10数据集中的精确度分别为2M和20M查询。