Data-free compression raises a new challenge because the original training dataset for a pre-trained model to be compressed is not available due to privacy or transmission issues. Thus, a common approach is to compute a reconstructed training dataset before compression. The current reconstruction methods compute the reconstructed training dataset with a generator by exploiting information from the pre-trained model. However, current reconstruction methods focus on extracting more information from the pre-trained model but do not leverage network engineering. This work is the first to consider network engineering as an approach to design the reconstruction method. Specifically, we propose the AutoReCon method, which is a neural architecture search-based reconstruction method. In the proposed AutoReCon method, the generator architecture is designed automatically given the pre-trained model for reconstruction. Experimental results show that using generators discovered by the AutoRecon method always improve the performance of data-free compression.
翻译:无数据压缩提出了新的挑战,因为由于隐私或传输问题,无法为需压缩的预先培训模式提供原始培训数据集。因此,一个共同的方法是在压缩之前计算经过重建的培训数据集。目前的重建方法通过利用事先培训模式提供的信息,用发电机计算经过重建的培训数据集。然而,目前的重建方法侧重于从经过培训的模型中提取更多信息,但并不利用网络工程。这项工作首先将网络工程视为设计重建方法的一种方法。具体地说,我们提议采用自动再恢复方法,这是一种以神经结构搜索为基础的重建方法。在拟议的AutoRecon方法中,根据事先培训的重建模型,发电机结构是自动设计的。实验结果显示,使用AutoRecon方法发现的发电机,总是能够改善无数据压缩的性能。