We present a methodology for systematically extending epidemic models to multilevel and multiscale spatio-temporal pandemic ones. Our approach builds on the use of coloured stochastic and continuous Petri nets facilitating the sound component-based extension of basic SIR models to include population stratification and also spatio-geographic information and travel connections, represented as graphs, resulting in robust stratified pandemic metapopulation models. This method is inherently easy to use, producing scalable and reusable models with a high degree of clarity and accessibility which can be read either in a deterministic or stochastic paradigm. Our method is supported by a publicly available platform PetriNuts; it enables the visual construction and editing of models; deterministic, stochastic and hybrid simulation as well as structural and behavioural analysis. All the models are available as supplementary material, ensuring reproducibility.
翻译:我们提出了将流行病模式系统地扩展到多层次和多尺度时空流行病的方法,我们的方法以使用彩色随机和连续的彼得里网为基础,促进基于组成部分的完善SIR基本模型扩展,以包括人口分层,还有以图表为代表的spatio地理信息和旅行联系,从而形成稳健的分层流行病元化模型,这种方法在本质上很容易使用,产生可缩放和可重复使用的模式,具有高度清晰度和可获取性,可以在确定性或随机模式中读取,我们的方法得到公开平台Petrinuts的支持;它能够直观地构建和编辑模型;确定性、随机和混合模拟以及结构和行为分析,所有模型都作为补充材料提供,确保可再生性。