The rapid evolution of deepfake generation technologies necessitates the development of robust face forgery detection algorithms. Recent studies have demonstrated that wavelet analysis can enhance the generalization abilities of forgery detectors. Wavelets effectively capture key facial contours, often slender, fine-grained, and globally distributed, that may conceal subtle forgery artifacts imperceptible in the spatial domain. However, current wavelet-based approaches fail to fully exploit the distinctive properties of wavelet data, resulting in sub-optimal feature extraction and limited performance gains. To address this challenge, we introduce WMamba, a novel wavelet-based feature extractor built upon the Mamba architecture. WMamba maximizes the utility of wavelet information through two key innovations. First, we propose Dynamic Contour Convolution (DCConv), which employs specially crafted deformable kernels to adaptively model slender facial contours. Second, by leveraging the Mamba architecture, our method captures long-range spatial relationships with linear complexity. This efficiency allows for the extraction of fine-grained, globally distributed forgery artifacts from small image patches. Extensive experiments show that WMamba achieves state-of-the-art (SOTA) performance, highlighting its effectiveness in face forgery detection.
翻译:暂无翻译