Cyberbullying is a disturbing online misbehaviour with troubling consequences. It appears in different forms, and in most of the social networks, it is in textual format. Automatic detection of such incidents requires intelligent systems. Most of the existing studies have approached this problem with conventional machine learning models and the majority of the developed models in these studies are adaptable to a single social network at a time. In recent studies, deep learning based models have found their way in the detection of cyberbullying incidents, claiming that they can overcome the limitations of the conventional models, and improve the detection performance. In this paper, we investigate the findings of a recent literature in this regard. We successfully reproduced the findings of this literature and validated their findings using the same datasets, namely Wikipedia, Twitter, and Formspring, used by the authors. Then we expanded our work by applying the developed methods on a new YouTube dataset (~54k posts by ~4k users) and investigated the performance of the models in new social media platforms. We also transferred and evaluated the performance of the models trained on one platform to another platform. Our findings show that the deep learning based models outperform the machine learning models previously applied to the same YouTube dataset. We believe that the deep learning based models can also benefit from integrating other sources of information and looking into the impact of profile information of the users in social networks.
翻译:网络欺凌是一种令人不安的在线错误行为,具有令人不安的后果。 它以不同的形式出现,在大多数社交网络中,它以文字形式出现。 自动发现这类事件需要智能系统。 大多数现有研究已经用传统机器学习模型处理这一问题,这些研究中的大多数发达模型同时适应一个单一的社会网络。 在最近的研究中,深层学习模型发现发现网络欺凌事件,声称它们可以克服传统模型的局限性,并改进探测性能。 在本文中,我们调查了这方面最新文献的调查结果。 我们成功地复制了这些文献的研究结果,并用作者使用的同样数据集,即维基百科、Twitter和形式验证了它们的调查结果。 然后,我们扩大了我们的工作,将开发的方法应用于一个新的YouTube数据集(~4k 用户的~54k 站),并调查了新社交媒体平台中模型的性能。 我们还将在一个平台上培训过的模型的性能进行了转让和评估。 我们的研究结果显示,从深层次学习模型复制了这些文献,并用同样的数据集验证了它们的调查结果。 我们相信,从深层次学习模型可以将其他数据库纳入以前应用到其他数据库。