We give the first polynomial time algorithms for escaping from high-dimensional saddle points under a moderate number of constraints. Given gradient access to a smooth function $f \colon \mathbb R^d \to \mathbb R$ we show that (noisy) gradient descent methods can escape from saddle points under a logarithmic number of inequality constraints. This constitutes the first tangible progress (without reliance on NP-oracles or altering the definitions to only account for certain constraints) on the main open question of the breakthrough work of Ge et al. who showed an analogous result for unconstrained and equality-constrained problems. Our results hold for both regular and stochastic gradient descent.
翻译:我们给出了在一定数量的限制下逃离高维马鞍点的首个多元时间算法。 如果梯度可以进入一个顺畅的功能 $f\ cron \mathbb R ⁇ d\ to\ mathbb R$, 我们显示( noisy) 梯度下降方法可以在不平等限制的对数下摆脱马鞍点。 这是在Ge et al.的突破性工作这个主要未决问题上(不依靠NP- orales或将定义改变为只考虑某些限制)的首次实际进展, 后者表现出了类似结果, 导致不受约束和受平等制约的问题。 我们的结果支持了常规和随机梯度的梯度下降。