This paper demonstrates numerically and experimentally that it is possible to tailor flexural band gaps in the low-frequency regime by appropriate choice of cutout characteristics. The finite element method is used to obtain the numerical dispersion relation and band gaps. The influence of the cutout's shape, size, and location on the band gap is systematically studied. The study demonstrates that the cutout should pass through the center of the unit cell, and a large aspect ratio is required to introduce flexural band gaps in the low-frequency regime. This is validated by experiments on a finite plate with 3 $\times$ 3 unit cells.
翻译:暂无翻译