Rejecting cosmic rays (CRs) is essential for the scientific interpretation of CCD-captured data, but detecting CRs in single-exposure images has remained challenging. Conventional CR detectors require experimental parameter tuning for different instruments, and recent deep learning methods only produce instrument-specific models that suffer from performance loss on telescopes not included in the training data. We present Cosmic-CoNN, a generic CR detector deployed for 24 telescopes at the Las Cumbres Observatory, which is made possible by the three contributions in this work: 1) We build a large and diverse ground-based CR dataset leveraging thousands of images from a global telescope network. 2) We propose a novel loss function and a neural network optimized for telescope imaging data to train generic CR detection models. At 95% recall, our model achieves a precision of 93.70% on Las Cumbres imaging data and maintains a consistent performance on new ground-based instruments never used for training. Specifically, the Cosmic-CoNN model trained on the Las Cumbres CR dataset maintains high precisions of 92.03% and 96.69% on Gemini GMOS-N/S 1x1 and 2x2 binning images, respectively. 3) We build a suite of tools including an interactive CR mask visualization and editing interface, console commands, and Python APIs to make automatic, robust CR detection widely accessible by the community of astronomers. Our dataset, open-source codebase, and trained models are available at https://github.com/cy-xu/cosmic-conn.
翻译:拒绝宇宙射线(CRS)对于对CCD采集的数据的科学解释至关重要,但是在单一接触图像中检测CRS仍然具有挑战性。常规CR探测器需要不同仪器的实验参数调整,而最近的深层次学习方法只产生在培训数据中未包含的望远镜上性能损失的仪器特有模型。我们展示了在Las Cumbres观测站为24个望远镜部署的通用CR探测器CN(Cosmi-CONN),由于这项工作的三项贡献而成为可能:(1) 我们建立了一个大型和多样化的地面CR数据集,利用了来自全球望远镜网络的数千个图像。(2) 我们提议了一个新的损失功能和一个神经网络,对望远镜图像数据进行了优化,以培训通用CRCR探测模型。 我们的模型在Las Cumbres成像数据上达到93.70%的精确度,并在从未用于培训的新的地面仪器上保持一致的性能。 具体地,在Las Cumbres CR数据集上培训的CRMS,在GOS-NS-S-S-S-SQS-Symassermission上分别进行高精准的精确和96.6的图像,在GMS-CRIS-CRM1和BIS-CRMADMS-CRMS-CIS-CMS-S-S-S-S-S-S-S-S-CIS-CIS-CIS-CM-CIS-S-S-CIS-CIS-CIS-CIS-CM-CIS-CIS-CIS-CIS-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CMDM-CM-CMDMDMDMDMDMDMDMDMDM-CMDM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-CM-C