Finding large or heavy matchings in graphs is a ubiquitous combinatorial optimization problem. In this paper, we engineer the first non-trivial implementations for approximating the dynamic weighted matching problem. Our first algorithm is based on random walks/paths combined with dynamic programming. The second algorithm has been introduced by Stubbs and Williams without an implementation. Roughly speaking, their algorithm uses dynamic unweighted matching algorithms as a subroutine (within a multilevel approach); this allows us to use previous work on dynamic unweighted matching algorithms as a black box in order to obtain a fully-dynamic weighted matching algorithm. We empirically study the algorithms on an extensive set of dynamic instances and compare them with optimal weighted matchings. Our experiments show that the random walk algorithm typically fares much better than Stubbs/Williams (regarding the time/quality tradeoff), and its results are often not far from the optimum.
翻译:在图形中查找大或重匹配是一个无处不在的组合优化问题。 在本文中, 我们设计了第一个非三边化执行程序, 以接近动态加权匹配问题。 我们的第一个算法以随机行走/ 路径和动态编程为基础。 第二个算法是由 Stubbs 和 Williams 推出的, 但没有执行。 粗略地说, 他们的算法使用动态非加权匹配算法作为子常规( 多层次方法); 这使我们能够使用先前关于动态非加权匹配算法的工作作为黑盒, 以获得一个完全动态加权匹配算法。 我们用实验方法对大量动态实例进行算法研究, 用最佳加权匹配法进行比较。 我们的实验显示, 随机行走算法通常比 Stubbs/ Williams (关于时间/质量权衡) 更好得多, 其结果往往离最佳方法不远。