We study a parameterized version of the local Hamiltonian problem, called the weighted local Hamiltonian problem, where the relevant quantum states are superpositions of computational basis states of Hamming weight $k$. The Hamming weight constraint can have a physical interpretation as a constraint on the number of excitations allowed or particle number in a system. We prove that this problem is in QW[1], the first level of the quantum weft hierarchy and that it is hard for QM[1], the quantum analogue of M[1]. Our results show that this problem cannot be fixed-parameter quantum tractable (FPQT) unless certain natural quantum analogue of the exponential time hypothesis (ETH) is false.
翻译:我们研究一个本地汉密尔顿问题的参数化版本,称为加权的本地汉密尔顿问题,在这个版本中,有关量子状态是计算基质状态的叠加物,即Hamming重量($k$)的重量值。火腿重量限制可能具有物理解释作用,以限制一个系统中允许的引力或粒子号的数量。我们证明这个问题在QW[1],即量子微ft等级的第一级,对于QM[1],即M[1]的量子类比来说是困难的。我们的结果表明,除非指数时间假设(ETH)的某些自然量类比是虚假的,否则这个问题是固定单量量量量可可移动的(FPQT)。