While domain adaptation has been used to improve the performance of object detectors when the training and test data follow different distributions, previous work has mostly focused on two-stage detectors. This is because their use of region proposals makes it possible to perform local adaptation, which has been shown to significantly improve the adaptation effectiveness. Here, by contrast, we target single-stage architectures, which are better suited to resource-constrained detection than two-stage ones but do not provide region proposals. To nonetheless benefit from the strength of local adaptation, we introduce an attention mechanism that lets us identify the important regions on which adaptation should focus. Our approach is generic and can be integrated into any single-stage detector. We demonstrate this on standard benchmark datasets by applying it to both SSD and YOLO. Furthermore, for an equivalent single-stage architecture, our method outperforms the state-of-the-art domain adaptation technique even though it was designed specifically for this particular detector.


翻译:虽然当培训和测试数据分布不同时,已利用领域适应来改进物体探测器的性能,但先前的工作主要侧重于两阶段探测器,这是因为使用区域建议可以进行地方性适应,这证明大大提高了适应效果。与此形成对照的是,我们的目标是单阶段结构,这些结构比两阶段结构更适合资源紧张的探测,但并不提供区域建议。然而,为了受益于地方适应的强力,我们引入了一个关注机制,让我们能够确定适应工作应侧重的重要区域。我们的方法是通用的,可以纳入任何单阶段探测器。我们在标准基准数据集上展示这一点,将它既适用于SSD,也适用于YOLO。此外,对于同等的单阶段结构,我们的方法比最先进的领域适应技术要优于这一技术,尽管它专门设计用于这一特定的探测器。

0
下载
关闭预览

相关内容

【ICML2020】小样本目标检测
专知会员服务
90+阅读 · 2020年6月2日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
1+阅读 · 2021年8月12日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
5+阅读 · 2018年5月16日
VIP会员
相关VIP内容
【ICML2020】小样本目标检测
专知会员服务
90+阅读 · 2020年6月2日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员