We propose a novel problem within end-to-end learning of task-oriented dialogs (TOD), in which the dialog system mimics a troubleshooting agent who helps a user by diagnosing their problem (e.g., car not starting). Such dialogs are grounded in domain-specific flowcharts, which the agent is supposed to follow during the conversation. Our task exposes novel technical challenges for neural TOD, such as grounding an utterance to the flowchart without explicit annotation, referring to additional manual pages when user asks a clarification question, and ability to follow unseen flowcharts at test time. We release a dataset (FloDial) consisting of 2,738 dialogs grounded on 12 different troubleshooting flowcharts. We also design a neural model, FloNet, which uses a retrieval-augmented generation architecture to train the dialog agent. Our experiments find that FloNet can do zero-shot transfer to unseen flowcharts, and sets a strong baseline for future research.
翻译:我们提议在最终到最终学习任务导向对话(TOD)中出现一个新问题, 对话系统模仿一个解决问题的代理, 帮助用户分析问题( 例如, 汽车不启动 ) 。 这种对话以特定域的流程图为基础, 代理在对话中应该遵循。 我们的任务暴露了神经TOD的新技术挑战, 比如在没有明确说明的情况下对流程图进行表述, 当用户询问一个澄清问题时提及额外的手动页面, 以及测试时跟踪未知流程图的能力。 我们发布了一个由2 738个基于12个不同故障配置流程图的对话框组成的数据集( FloNet ) 。 我们还设计了一个神经模型, 即 FloNet, 使用一个检索和提示生成的生成架构来培训对话代理。 我们的实验发现 FloNet 可以将零光传输到看不见的流程图, 并为未来研究设定一个强大的基准 。