Disruption management during the airline scheduling process can be compartmentalized into proactive and reactive processes depending upon the time of schedule execution. The state of the art for decision-making in airline disruption management involves a heuristic human-centric approach that does not categorically study uncertainty in proactive and reactive processes for managing airline schedule disruptions. Hence, this paper introduces an uncertainty transfer function model (UTFM) framework that characterizes uncertainty for proactive airline disruption management before schedule execution, reactive airline disruption management during schedule execution, and proactive airline disruption management after schedule execution to enable the construction of quantitative tools that can allow an intelligent agent to rationalize complex interactions and procedures for robust airline disruption management. Specifically, we use historical scheduling and operations data from a major U.S. airline to facilitate the development and assessment of the UTFM, defined by hidden Markov models (a special class of probabilistic graphical models) that can efficiently perform pattern learning and inference on portions of large data sets.
翻译:航空日程安排过程中的干扰管理可分割成积极主动和被动的流程,视执行时间表的时间而定; 航空中断管理决策的先进程度涉及一种超自然的以人为中心的方法,该方法不绝对研究管理航空日程安排中断的主动和被动程序中的不确定性; 因此,本文件引入了一个不确定性转移功能模型(UTFM)框架,其特点为:在计划执行之前进行积极主动的航空公司中断管理,在计划执行期间进行被动的航空公司中断管理,以及在计划执行之后进行积极主动的航空公司中断管理,以便能够建立数量工具,使智能代理能够使复杂的互动和程序合理化,实现稳健的航空中断管理; 具体地说,我们利用美国一家主要航空公司的历史日程安排和业务数据,促进开发和评估由隐蔽的Markov模型(一种特别的概率图形模型)界定的UTFM(一种特殊类型的概率图形模型)定义的UTFMFM系统,该模型能够有效地对大型数据集部分进行模式学习和推断。