Many tasks in robot-assisted surgery require planning and controlling manipulators' motions that interact with highly deformable objects. This study proposes a realistic, time-bounded simulator based on Position-based Dynamics (PBD) simulation that mocks brain deformations due to catheter insertion for pre-operative path planning and intra-operative guidance in keyhole surgical procedures. It maximizes the probability of success by accounting for uncertainty in deformation models, noisy sensing, and unpredictable actuation. The PBD deformation parameters were initialized on a parallelepiped-shaped simulated phantom to obtain a reasonable starting guess for the brain white matter. They were calibrated by comparing the obtained displacements with deformation data for catheter insertion in a composite hydrogel phantom. Knowing the gray matter brain structures' different behaviors, the parameters were fine-tuned to obtain a generalized human brain model. The brain structures' average displacement was compared with values in the literature. The simulator's numerical model uses a novel approach with respect to the literature, and it has proved to be a close match with real brain deformations through validation using recorded deformation data of in-vivo animal trials with a mean mismatch of 4.73$\pm$2.15%. The stability, accuracy, and real-time performance make this model suitable for creating a dynamic environment for KN path planning, pre-operative path planning, and intra-operative guidance.


翻译:机器人辅助手术中的许多任务要求规划和控制操纵者与高度变形物体相互作用的操纵者动作。本研究提出一个现实的、有时限的模拟模拟器,该模拟器基于基于定位的动态(PBD)模拟模型,模拟大脑畸形,模拟大脑变形,因为插入导管以进行手术前路径规划,并在关键孔外科手术程序中提供操作内部指导。通过计算变形模型的不确定性、噪音感知和不可预测的动作动作,使成功概率最大化。PBD变形参数是在平行的立形模拟幻影模型上启动的,以获得大脑白质的合理起始猜测。它们通过将获得的变形数据与用于插入复合水文凝胶的导体的变形数据的变形数据加以校准。了解灰物质脑结构的不同行为,这些参数经过精细调整,以获得一个普遍的人类大脑模型。大脑结构的平均变异与文献中的数值进行比较。模拟数字模型对文献采用了一种新颖的方法,并且证明它与真实的脑变形变形模型相匹配。 通过验证数据,使动物变形过程的变形过程的精确性数据进行记录,使这种变形过程成为一种稳定的演化过程。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
5+阅读 · 2021年2月8日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年9月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员