The identification of interesting substructures within jets is an important tool for searching for new physics and probing the Standard Model at colliders. Many of these substructure tools have previously been shown to take the form of optimal transport problems, in particular the Energy Mover's Distance (EMD). In this work, we show that the EMD is in fact the natural structure for comparing collider events, which accounts for its recent success in understanding event and jet substructure. We then present a Shape Hunting Algorithm using Parameterized Energy Reconstruction (SHAPER), which is a general framework for defining and computing shape-based observables. SHAPER generalizes N-jettiness from point clusters to any extended, parametrizable shape. This is accomplished by efficiently minimizing the EMD between events and parameterized manifolds of energy flows representing idealized shapes, implemented using the dual-potential Sinkhorn approximation of the Wasserstein metric. We show how the geometric language of observables as manifolds can be used to define novel observables with built-in infrared-and-collinear safety. We demonstrate the efficacy of the SHAPER framework by performing empirical jet substructure studies using several examples of new shape-based observables.
翻译:确定喷气机内有趣的子结构是寻找新物理和在对焦机中探索标准模型的一个重要工具,其中许多次结构工具以前被显示为以最佳运输问题的形式,特别是能源移动器距离(EMD)的形式。在这项工作中,我们显示EMD实际上是比较相撞事件的自然结构,这是它最近在了解事件和喷气亚结构方面取得成功的原因。然后我们用参数化能源重建(SHAPER)来展示一个形状捕捉阿尔哥里特姆(SHAPER),这是界定和计算基于形状的观测结果的一般框架。SHAPER将N-jettinity从点到任何扩展的、可喜化形状一般化为N-jetitis。这是通过有效地将事件与代表理想形状的能源流参数化的能量流的环流之间的环流最小化为最小化。这是使用Wasserrrstein 度的双向Sinkhorn近似值执行的。我们展示如何使用新可观测的公式的几何语言来界定以红外和双向线安全为主的新的观测结果。我们用若干次空间空间结构进行实验性研究的结果。我们展示了SHAPER系统框架的效能。</s>