We prove a general Embedding Principle of loss landscape of deep neural networks (NNs) that unravels a hierarchical structure of the loss landscape of NNs, i.e., loss landscape of an NN contains all critical points of all the narrower NNs. This result is obtained by constructing a class of critical embeddings which map any critical point of a narrower NN to a critical point of the target NN with the same output function. By discovering a wide class of general compatible critical embeddings, we provide a gross estimate of the dimension of critical submanifolds embedded from critical points of narrower NNs. We further prove an irreversiblility property of any critical embedding that the number of negative/zero/positive eigenvalues of the Hessian matrix of a critical point may increase but never decrease as an NN becomes wider through the embedding. Using a special realization of general compatible critical embedding, we prove a stringent necessary condition for being a "truly-bad" critical point that never becomes a strict-saddle point through any critical embedding. This result implies the commonplace of strict-saddle points in wide NNs, which may be an important reason underlying the easy optimization of wide NNs widely observed in practice.


翻译:我们证明,这是关于深度神经网络(NNs)损失景观的一般性嵌入原则,它揭示了NNs损失景观的等级结构,即NNs的损失景观包含所有较窄的NNs的所有临界点。这一结果是通过建立一系列关键嵌入装置来取得的,这些装置将一个较窄的NNN的任何临界点映射到目标NN的临界点,并具有相同的输出功能。通过发现一个广泛、一般兼容的关键嵌入装置,我们提供了对从较窄的NNS临界点嵌入的关键子部分的大小的粗估计。我们进一步证明,任何关键嵌入装置的不可逆性属性,即一个临界点的负/零/正等值数量可能增加,但不会随着NNS的嵌入范围扩大而减少。通过对一般兼容的关键嵌入装置的特殊认识,我们证明,一个严格的必要条件是,要成为一个“非常坏的”临界点,从不通过任何临界嵌入点变得严格。我们进一步证明,任何关键的嵌入装置都具有不可逆转性特性,即赫点的黑森矩阵矩阵矩阵矩阵中的重要原因可能是普遍的。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
机器之心Pro上线两周后...
机器之心
3+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
Arxiv
6+阅读 · 2020年10月8日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
机器之心Pro上线两周后...
机器之心
3+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
Top
微信扫码咨询专知VIP会员