Recent years have witnessed the great successes of embedding-based methods in recommender systems. Despite their decent performance, we argue one potential limitation of these methods -- the embedding magnitude has not been explicitly modulated, which may aggravate popularity bias and training instability, hindering the model from making a good recommendation. It motivates us to leverage the embedding normalization in recommendation. By normalizing user/item embeddings to a specific value, we empirically observe impressive performance gains (9\% on average) on four real-world datasets. Although encouraging, we also reveal a serious limitation when applying normalization in recommendation -- the performance is highly sensitive to the choice of the temperature $\tau$ which controls the scale of the normalized embeddings. To fully foster the merits of the normalization while circumvent its limitation, this work studied on how to adaptively set the proper $\tau$. Towards this end, we first make a comprehensive analyses of $\tau$ to fully understand its role on recommendation. We then accordingly develop an adaptive fine-grained strategy Adap-$\tau$ for the temperature with satisfying four desirable properties including adaptivity, personalized, efficiency and model-agnostic. Extensive experiments have been conducted to validate the effectiveness of the proposal. The code is available at \url{https://github.com/junkangwu/Adap_tau}.


翻译:近些年来,我们目睹了在推荐人系统中嵌入基于方法的伟大成功。尽管我们表现良好,但我们认为这些方法的一个潜在局限性是潜在的 -- -- 嵌入量没有被明确调整,这可能会加剧受欢迎偏差和培训的不稳定性,从而妨碍模型提出良好的建议。这促使我们利用建议中的嵌入正常化。通过将用户/项目嵌入到特定价值中,我们从经验上看到四个真实世界数据集的令人印象深刻的绩效收益(平均为9 ⁇ )。尽管我们令人鼓舞,但我们在应用建议中的正常化时也显示出一个严重的局限性 -- -- 嵌入量对于控制正常嵌入规模的温度 $ 高度敏感。为了充分促进正常化的优点,同时绕过其局限性,我们研究了如何调整适当的美元。为此,我们首先对美元进行了全面分析,以充分理解其在建议中的作用。我们随后相应地制定了适应性调整性Adap-tau$的温度战略,并满足了四种理想的属性,包括适应性、个人化/测试性能和模型。在可应用的实验中,进行了模型和可应用性试验。

1
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员