The principal rank-one (RO) components of an image represent the self-similarity of the image, which is an important property for image restoration. However, the RO components of a corrupted image could be decimated by the procedure of image denoising. We suggest that the RO property should be utilized and the decimation should be avoided in image restoration. To achieve this, we propose a new framework comprised of two modules, i.e., the RO decomposition and RO reconstruction. The RO decomposition is developed to decompose a corrupted image into the RO components and residual. This is achieved by successively applying RO projections to the image or its residuals to extract the RO components. The RO projections, based on neural networks, extract the closest RO component of an image. The RO reconstruction is aimed to reconstruct the important information, respectively from the RO components and residual, as well as to restore the image from this reconstructed information. Experimental results on four tasks, i.e., noise-free image super-resolution (SR), realistic image SR, gray-scale image denoising, and color image denoising, show that the method is effective and efficient for image restoration, and it delivers superior performance for realistic image SR and color image denoising.


翻译:为实现这一目标,我们提议一个新的框架,由两个模块组成,即RO的分解和RO的重建。RO的分解旨在将腐败的图像分解成RO的组件,这是图像恢复的重要属性。但是,腐败的图像的RO组成部分可能会通过图像分解程序而消失。我们建议,在图像恢复过程中,应当使用RO的属性,并避免毁灭。为了实现这一点,我们提议一个新的框架,由两个模块组成,即RO的分解和RO的重建。RO的分解旨在将腐败的图像分解成RO的组件和剩余部分。这是通过连续对图像或其残余部分进行RO的投影来提取RO组成部分。基于神经网络的RO预测,提取图像中最接近的RO组成部分。RO的重建旨在重建重要信息,分别从RO的组件和残余部分中重建,以及从这一重建的信息中恢复图像。四个任务的实验结果,即无噪音图像超级解析(SR)、现实的图像SR、灰度图像分解和彩色图像解析,表明该方法能够有效和恢复图像。

0
下载
关闭预览

相关内容

Python图像处理,366页pdf,Image Operators Image Processing in Python
安全和健壮的医疗机器学习综述,附22页pdf
专知会员服务
46+阅读 · 2020年1月25日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Image Captioning 36页最新综述, 161篇参考文献
专知
90+阅读 · 2018年10月23日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
7+阅读 · 2018年11月27日
Recurrent Fusion Network for Image Captioning
Arxiv
3+阅读 · 2018年7月31日
VIP会员
相关VIP内容
Python图像处理,366页pdf,Image Operators Image Processing in Python
安全和健壮的医疗机器学习综述,附22页pdf
专知会员服务
46+阅读 · 2020年1月25日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
相关资讯
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Image Captioning 36页最新综述, 161篇参考文献
专知
90+阅读 · 2018年10月23日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员