We develop a mixed finite element method for the coupled problem arising in the interaction between a free fluid governed by the Stokes equations and flow in deformable porous medium modeled by the Biot system of poroelasticity. Mass conservation, balance of stress, and the Beavers--Joseph--Saffman condition are imposed on the interface. We consider a fully mixed Biot formulation based on a weakly symmetric stress-displacement-rotation elasticity system and Darcy velocity-pressure flow formulation. A velocity-pressure formulation is used for the Stokes equations. The interface conditions are incorporated through the introduction of the traces of the structure velocity and the Darcy pressure as Lagrange multipliers. Existence and uniqueness of a solution are established for the continuous weak formulation. Stability and error estimates are derived for the semi-discrete continuous-in-time mixed finite element approximation. Numerical experiments are presented to verify the theoretical results and illustrate the robustness of the method with respect to the physical parameters.
翻译:我们为由斯托克斯方程式调节的自由流体和以生物多孔性生物系统模型的可变多孔介质的流体之间的相互作用所产生的问题,制定了一种混合的有限要素方法。对界面施加了大规模保护、压力平衡和比弗斯-约瑟夫-萨夫曼条件。我们认为,根据微弱的对称压力变化调节弹性系统和达斯速度压力流动配方,一种完全混合的生物制剂是混合的。斯托克斯方程式使用了速度压力配方。通过引入结构速度的痕迹和达西压力作为拉格兰特的乘数,将界面条件纳入其中。为持续弱化的配方确定了一种极端和独特的解决办法。为半分辨连续连续连续混合定点元素的精确度得出了稳定性和误差估计值。提出了数值实验,以核实理论结果,并表明该方法在物理参数方面的坚固性。