We introduce the novel-view acoustic synthesis (NVAS) task: given the sight and sound observed at a source viewpoint, can we synthesize the sound of that scene from an unseen target viewpoint? We propose a neural rendering approach: Visually-Guided Acoustic Synthesis (ViGAS) network that learns to synthesize the sound of an arbitrary point in space by analyzing the input audio-visual cues. To benchmark this task, we collect two first-of-their-kind large-scale multi-view audio-visual datasets, one synthetic and one real. We show that our model successfully reasons about the spatial cues and synthesizes faithful audio on both datasets. To our knowledge, this work represents the very first formulation, dataset, and approach to solve the novel-view acoustic synthesis task, which has exciting potential applications ranging from AR/VR to art and design. Unlocked by this work, we believe that the future of novel-view synthesis is in multi-modal learning from videos.
翻译:我们引入了新视觉声学合成(NVAS)任务:鉴于在源视图中观测到的视觉和声音,我们能否从看不见的目标角度综合该场景的声音?我们建议一种神经合成方法:视觉辅助声学合成(ViGAS)网络,通过分析输入的视听提示,学习合成空间任意点的声音。为衡量这一任务,我们收集了两个首个他们同类的大型多视角视听数据集,一个合成数据集和一个真实数据集。我们展示了我们关于空间提示和合成两个数据集忠实音频的模型成功的理由。据我们了解,这项工作代表了第一个设计、数据集和解决新视觉声学合成任务的方法,它具有从AR/VR到艺术和设计等令人振奋人心的潜在应用。我们认为,新视角合成的未来是从视频中多模式学习的。