Network-valued data are encountered in a wide range of applications and pose challenges in learning due to their complex structure and absence of vertex correspondence. Typical examples of such problems include classification or grouping of protein structures and social networks. Various methods, ranging from graph kernels to graph neural networks, have been proposed that achieve some success in graph classification problems. However, most methods have limited theoretical justification, and their applicability beyond classification remains unexplored. In this work, we propose methods for clustering multiple graphs, without vertex correspondence, that are inspired by the recent literature on estimating graphons -- symmetric functions corresponding to infinite vertex limit of graphs. We propose a novel graph distance based on sorting-and-smoothing graphon estimators. Using the proposed graph distance, we present two clustering algorithms and show that they achieve state-of-the-art results. We prove the statistical consistency of both algorithms under Lipschitz assumptions on the graph degrees. We further study the applicability of the proposed distance for graph two-sample testing problems.


翻译:网络价值数据在广泛的应用中遇到,并因其结构复杂和没有顶端对应物而在学习上构成挑战。这类问题的典型例子包括蛋白质结构和社交网络的分类或分组。提出了从图形内核到图形神经网络的各种方法,在图形分类问题上取得了一定的成功。然而,大多数方法理论上的理由有限,其超出分类范围的适用性仍未探讨。在这项工作中,我们建议了将多个图集分组的方法,而没有顶端对应物,这些方法受最近关于估算图形文献的启发 -- -- 与无限的顶端限制相对应的对称函数。我们建议了基于排序和移动图形估计数的新的图形距离。我们使用拟议的图形距离,提出了两种组合算法,并表明它们达到了最新的结果。我们证明了Lipschitz假设下的两种算法在图形度上的统计一致性。我们进一步研究了拟议的图式二模测试问题距离的适用性。

0
下载
关闭预览

相关内容

【NUS-Xavier教授】注意力神经网络,79页ppt
专知会员服务
62+阅读 · 2021年11月25日
【ST2020硬核课】深度神经网络,57页ppt
专知会员服务
45+阅读 · 2020年8月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
6+阅读 · 2019年11月14日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
27+阅读 · 2020年6月19日
Arxiv
6+阅读 · 2019年11月14日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
3+阅读 · 2017年12月1日
Top
微信扫码咨询专知VIP会员