Motivation: A considerable number of data mining approaches for biomedical data analysis, including state-of-the-art associative models, require a form of data discretization. Although diverse discretization approaches have been proposed, they generally work under a strict set of statistical assumptions which are arguably insufficient to handle the diversity and heterogeneity of clinical and molecular variables within a given dataset. In addition, although an increasing number of symbolic approaches in bioinformatics are able to assign multiple items to values occurring near discretization boundaries for superior robustness, there are no reference principles on how to perform multi-item discretizations. Results: In this study, an unsupervised discretization method, DI2, for variables with arbitrarily skewed distributions is proposed. DI2 provides robust guarantees of generalization by placing data corrections using the Kolmogorov-Smirnov test before statistically fitting distribution candidates. DI2 further supports multi-item assignments. Results gathered from biomedical data show its relevance to improve classic discretization choices. Software: available at https://github.com/JupitersMight/DI2


翻译:动机:大量生物医学数据分析的数据挖掘方法,包括最先进的联合模型,需要某种形式的数据离散;虽然提出了各种不同的离散方法,但一般都是在一套严格的统计假设下开展工作,这些假设可能不足以处理某一数据集内临床和分子变量的多样性和异质性;此外,生物信息学中越来越多的象征性方法能够将多种物品分配到离散边界附近出现的值,以达到较高的稳健性,但对于如何执行多项目离散没有参考原则;结果:在这项研究中,提出了一种无监督的离散方法,即关于任意偏斜分布的变量的DI2。 DI2通过在统计上适当分配候选人之前使用科尔莫戈罗夫-斯米尔诺夫测试提供数据校正,为普遍化提供了有力的保障。DI2还支持多项目任务。从生物医学数据中收集的结果表明它对于改进传统的离散化选择具有相关性。软件:可在https://github.com/JupiditersMDI2上查阅。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Testing and estimation of clustered signals
Arxiv
0+阅读 · 2021年4月29日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员