This work presents a systematic review of recent efforts (since 2010) aimed at automatic analysis of nonverbal cues displayed in face-to-face co-located human-human social interactions. The main reason for focusing on nonverbal cues is that these are the physical, machine detectable traces of social and psychological phenomena. Therefore, detecting and understanding nonverbal cues means, at least to a certain extent, to detect and understand social and psychological phenomena. The covered topics are categorized into three as: a) modeling social traits, such as leadership, dominance, personality traits, b) social role recognition and social relations detection and c) interaction dynamics analysis in terms of group cohesion, empathy, rapport and so forth. We target the co-located interactions, in which the interactants are always humans. The survey covers a wide spectrum of settings and scenarios, including free-standing interactions, meetings, indoor and outdoor social exchanges, dyadic conversations, and crowd dynamics. For each of them, the survey considers the three main elements of nonverbal cues analysis, namely data, sensing approaches and computational methodologies. The goal is to highlight the main advances of the last decade, to point out existing limitations, and to outline future directions.
翻译:这项工作对最近(2010年以来)的努力进行了系统审查,目的是自动分析在面对面的人类与人类社会互动中展示的非语言提示(自2010年以来),重点是非语言提示(非语言提示),主要原因在于这些是社会和心理现象的物理、机器可探测的痕迹,因此,发现和理解非语言提示(至少在某种程度上)意味着发现和理解社会和心理现象。所涵盖的议题分为三个类别:(a) 建模社会特征,如领导、主导地位、个性特征、b) 社会角色识别和社会关系检测;(c) 从群体凝聚力、同情、和谐等角度进行互动动态分析。我们把目标对准了共同位置的互动,即互动者始终是人类。调查涵盖广泛的环境和情景,包括自由互动、会议、室内和室外社会交流、三角对话以及人群动态。对每个专题的调查都考虑了非语言提示分析的三大要素,即数据、感测方法和计算方法。目标是突出过去十年的主要进展,指出现有局限性。